1. Question:Without actual division show that `52563744` is divisible by `24`. 

    Answer
    `24=3 xx 8` are co-prime.
    The sum of the digits is given number is `36`, which is divisible by `3`.
    So, the given number is divisible by `3`.
    The number formed by the last 3-digits of the given number is `744`, which is divisible by `8`.
    So, the given number is divisible by `8`.
    Thus, the given number is divisible by both `3` and `8`, where `3` and `8` are co-prime.
    So, it is divisible by `3 xx 8` , i.e. `24`.






    1. Report
  2. Question:Multiply `5793405` by `99999` by short cut method. 

    Answer
    `5793405 xx 99999` 
    `= 5793405 xx (100000 - 1)`                        
    `= (579340500000 - 5793405)`                        
    `= 579334706595.`






    1. Report
  3. Question:Evaluate: i) `896 xx 137 + 986 xx 863 ` ii) `983 xx 207 - 983 xx 107` 

    Answer
    i) `986 xx 137 + 986 xx 863` 
    `= 986 ( 137 + 863 )`
    `= 986 xx 1000`
    `= 980000.`
    
    ii) `983 xx 207 - 983 xx 107`
    ` = 983 xx ( 207 - 107)`
    `= 983 xx 100 = 98300.`






    1. Report
  4. Question:Evaluate following expressions: i) `( 527 xx 527 xx 527 + 183 xx 183 xx 183)/(527 xx 527 - 527 xx 183 + 183 xx 183)` ii) `(458 xx 458 xx 458 - 239 xx 239 xx 239)/(458 xx 458 xx + 458 xx 239 + 239 xx 239)` iii) `((614 + 168)^2 - (614 - 168)^2)/(614 xx 168)` iv) `((832 + 278)^2 + (832 - 278)^2)/(832 xx 832 + 278 xx 278)` 

    Answer
    i) Given Expression 
    
     `= ((527)^3 + (183)^3)/((527)^2 - 527 xx 183 + (183)^2)`
    
     `= (a^3 + b^3)/(a^2 - ab + b^2)`
    
     `= (a + b) = (527 + 183) + 710)`
    
    
     ii) Given Expression 
    
     `= ((458)^3-(239)^3)/((458)^2 + 458 xx 239 + (239)^2)`
    
     `= (a^3-b^3)/(a^2 + ab + b^2)`
    
     `= (a - b) = (457 - 239) = 219)`
    
    
     iii) Given Expression
    
     `= ((a + b)^2 - (a - b)^2)/(ab)` 
    
     `= (4ab)/4`
    
     `= 4`
    
    
     iv) Given Expression
    
     `= ((a + b)^2 + (a - b)^2)/(a^2 + b^2)`
    
     `= (2(a^2 + b^2))/(a^2 + b^2)`
    
     `= 2`






    1. Report
  5. Question:On dividing `15968` by a certain number, the quotient is `89` and the remainder is `37`. Find the divisor. 

    Answer
    Divisor = `(text{Dividend - Remainder})/text{Quotient} = (15968 - 37)/89 = 179`






    1. Report
Copyright © 2025. Powered by Intellect Software Ltd