1. Question: 

    Answer






    1. Report
  2. Question: 

    Answer






    1. Report
  3. Question: 

    Answer






    1. Report
  4. Question:১১. প্রমাণ কর: `(4^n - 1)/(2^n - 1) = 2^n + 1` 

    Answer
    সমাধান:
    
     বামপক্ষ `= (4^n - 1)/(2^n - 1)`
    
              `= ((2^2)^n - 1)/(2^n - 1)`
    
             `= ((2^n)^2 - 1)/(2^n - 1)`
    
             `= ((2^n + 1)(2^n - 1))/((2^n - 1))` 
                                  [ `:. a^2 - b^2 = (a + b)(a - b)` ]
    
             `= 2^n + 1`
    
               = ডানপক্ষ
    
        `:. (4^n - 1)/(2^n - 1) = 2^n + 1`  (প্রমাণিত)






    1. Report
  5. Question:১২. প্রমাণ কর: `(2^(p + 1) .3^(2p - q) .5^(p + q) .6^q)/(6^p .10^(q + 2) .15^p) = 1/50` 

    Answer
    সমাধান: 
     বামপক্ষ `= (2^(p + 1) .3^(2p - q) .5^(p + q) .6^q)/(6^p .10^(q + 2) .15^p)`
    
           `= (2^(p + 1) .3^(2p - q) .5^(p + q) .(2 xx 3)^q)/((2 xx 3)^p .(5 xx 2)^(q + 2) .(3 xx 5)^q)`
    
           `= (2^(p + 1) .3^(2p - q) .5^(p + q) .2^q .3^q)/(2^p .3^p .5^(q + 2) .2^(q + 2) .3^p .5^p)`
    
           `= (2^(p + q + 1) .3^(2p - q - q) .5^(p + q))/(2^(p + q + 2) .3^(p + p) .5^(q + p + 2))`
                        
           `= (2^(p + q + 1) .3^(2p) .5^(p + q))/(2^(p + q + 2) .3^(2p) .5^(p + q + 2))`
    
           `= 2^((p + q + 1) - (p + q + 2)) .3^(2p - 2p) .5^((p + q) - (p + q + 2))`
    
           `= 2^(p + q + 1 - p - q - 2) .3^0 .5^(p + q - p - q - 2)`
     
           `= 2^(- 1) . 1 . 5^(- 2)`
     
           `= 1/2 . 1 . 1/5^2`
        
           `= 1/2 . 1 . 1/25`
    
           `= 1/50`
    
      `:. (2^(p + 1) .3^(2p - q) .5^(p + q) .6^q)/(6^p .10^(q + 2) .15^p) `
    
          `= 1/50`   প্রমাণিত






    1. Report
Copyright © 2025. Powered by Intellect Software Ltd