1. Question:উৎপাদকে বিশ্লেষণ কর: `2x^4 - 3x^3 - 3x - 2` 

    Answer
    মনে করি, `f(x) = 2x^4 - 3x^3 - 3x - 2`
    
      তাহলে, `f(2) = 2.2^4 - 3.2^4 - 3.2 - 2`
    
                      `= 32 - 24 - 6 - 2`
    
                        = 32 - 32
    
                        = 0
    
         :. (x - 2), f(x)  এর একটি উৎপাদক।
    
      এখন, `2x^4 - 3x^3 - 3x - 2`
    
            `= 2x^4 - 4x^3 + x^3 - 2x^2 + 2x^2 - 4x + x - 2`
    
            `= 2x^3 (x - 2) + x^2 (x - 2) + 2x (x - 2) + 1(x - 2)`
    
            `= (x - 2) (2x^3 + x^2 + 2x + 1)`
    
            `= (x - 2) {x^2 (2x + 1) + 1(2x + 1)}`
    
            `= (x - 2) (x^2 + 1) (2x + 1)`      (Ans)






    1. Report
  2. Question:উৎপাদকে বিশ্লেষণ কর: `4x^4 + 12x^3 + 7x^2 - 3x - 2` 

    Answer
    ধরি, `f(x) = 4x^4 + 12x^3 + 7x^2 - 3x - 2`
    
      তাহলে, `f(- 1) = 4(- 1)^4 + 12 (- 1)^3 + 7 (- 1)^2 - 3(- 1) - 2`
    
        `= 4.1 + 12 (- 1) + 7.1 - 3 (- 1) - 2`
    
          = 4 - 12 + 7 + 3 - 2 
    
          = 14 - 14
    
          = 0
    
        :. {x - (- 1)} = (x + 1), f(x) এর একটি উৎপাদক।
    
       এখন,  `x^4 + 12x^3 + 7x^2 - 3x - 2`
    
             `= 4x^4 + 4x^3 + 8x^3 + 8x^2 - x^2 - x - 2x - 2`
    
             `= 4x^3 (x + 1) + 8x^2 (x + 1) - x(x + 1) - 2(x + 1)`
    
             `= (x + 1) (4x^3 + 8x^2 - x - 2)`
    
             `= (x + 1) {4x^2 (x + 2) - 1(x + 2)}`
    
             `= (x + 1) (x + 2) (4x^2 - 1)`
    
             `= (x + 1) (x + 2) {(2x)^2 - 1^2}`
    
             `= (x + 1) (x + 2) (2x + 1) (2x - 1)`
    
               = (2x - 1) (x + 1) (x + 2) (2x + 1)`   (Ans)






    1. Report
  3. Question:উৎপাদকে বিশ্লেষণ কর: `x^6 - x^5 + x^4 - x^3 + x^2 - x` 

    Answer
    `x^6 - x^5 + x^4 - x^3 + x^2 - x`
    
    `= x (x^5 - x^4 + x^3 - x^2 + x - 1)`
    
     এখন, মনে করি, f(x) `= x^5 - x^4 + x^3 - x^2 + x - 1`
    
     :. f(1) `= (1)^5 - (1)^4 + (1)^3 - (1)^2 + (1) - 1`
    
             `= 1 - 1 + 1 - 1 + 1 - 1`
    
              = 3 - 3
    
             = 0
    
           :. (x - 1), f (x) এর একটি উৎপাদক।
    
      এখন, `x^5 - x^4 + x^3 - x^2 + x - 1`
    
       `= x^4 (x - 1) + x^2(x - 1) + 1(x - 1)`
    
       `= (x - 1) (x^4 + x^2 + 1)`
    
       `= (x - 1) {(x^2)^2 + 2.x^2.1 + (1)^2 - x^2}`
    
       `= (x - 1) {(x^2 + 1)^2 - (x)^2}`
    
       `= (x - 1) (x^2 + 1 + x) (x^2 + 1 - x)`
    
       `= (x - 1) (x^2 + x + 1) (x^2 - x + 1)`
    
      `:. x^6 - x^5 + x^4 - x^3 + x^2 - x `
    
     `= x(x - 1) (x^2 + x + 1) (x^2 - x + 1)`   (Ans)






    1. Report
  4. Question:উৎপাদকে বিশ্লেষণ কর: `4x^3 - 5x^2 + 5x - 1` 

    Answer
    ধরি, `f(x) = 4x^3 - 5x^2 + 5x - 1`
    
     তাহলে, `f(1/4) = 4.(1/4)^3 - 5(1/4)^2 + 5 (1/4) - 1`
    
                     `= 4. 1/(64) - 5. 1/(16) + 5 . 1/4 - 1`
    
                     `= 1/(16) - 5/(16) + 5/4 - 1`
    
                     `= (1 - 5 + 20 - 16)/(16)`
    
                     `= (21 - 21)/(16)`
    
                     `= 0/(16)`
    
                       = 0
    
     `:. (x - 1/4)` অর্থাৎ (4x - 1), f(x) এর একটি উৎপাদক।
    
     এখন, `4x^3 - 5x^2 + 5x - 1`
    
      `= 4x^3 - x^2 - 4x^2 + x + 4x - 1`
    
      `= x^2 (4x - 1) - x(4x - 1) + 1(4x - 1)`
    
      `= (4x - 1) (x^2 - x + 1)`   (Ans)






    1. Report
  5. Question:উৎপাদকে বিশ্লেষণ কর: `18x^3 + 15x^2 - x - 2` 

    Answer
    ধরি, `f(x) = 18x^3 + 15x^2 - x - 2`
    
     তাহলে, `f(- 1/2) = 18 (- 1/2)^3 + 15(- 1/2)^2 - (- 1/2) - 2`
    
                        `= - 18 .1/2 + 15 . 1/4 + 1/2 - 2`
    
                        `= (- 9 + 15 + 2 - 8)/4`
    
                        `= (17 - 17)/4 = 0/4 = 0`
    
       `:. {x - (- 1/2)} = (x + 1/2)`
    
       অর্থাৎ (2x + 1), f(x) এর একটি উৎপাদক।
    
     এখন,  `18x^3 + 15x^2 - x - 2`
    
       `= 18x^3 + 9x^2 + 6x^2 + 3x - 4x - 2`
    
       `= 9x^2 (2x + 1) + 3x (2x + 1) - 2(2x + 1)`
    
       `= (2x + 1) (9x^2 + 3x - 2)`
    
       `= (2x + 1) (9x^2 + 6x - 3x - 2)`
    
       `= (2x + 1) {3x (3x + 2) - 1(3x + 2)}`
    
       `= (2x + 1) (3x + 2) (3x - 1)`      (Ans)






    1. Report
Copyright © 2025. Powered by Intellect Software Ltd