1. Question:উৎপাদকে বিশ্লেষণ কর: `2x^2 - x - 3` 

    Answer
    ধরি, `f(x) = 2x^2 - x - 3`
    
     তাহলে, `f(- 1) = 2 (-1)^2 - (-1) - 3`
    
                 = 2 + 1 - 3
    
                 = 0
    
     `:. {x - (-1)} = (x + 1), f(x)` এর একটি উৎপাদক।
    
     এখন, `2x^2 - x - 3`
    
      `= 2x^2 + 2x - 3x - 3`
    
      `= 2x (x + 1) - 3(x + 1)`
    
        = (x + 1) (2x - 3)   (Ans)






    1. Report
  2. Question:উৎপাদকে বিশ্লেষণ কর: `3x^2 - 7x - 6` 

    Answer
    ধরি, `f(x) = 3x^2 - 7x - 6`
    
     তাহলে, `f(3) = 3 (3)^2 - 7.3 - 6`
    
       `= (3 xx 9) - 21 - 6`
    
        = 27 - 27
    
        = 0
    
      `:. (x - 3), f(x)` এর একটি উৎপাদক।
    
      এখন, `3x^2 - 7x - 6`
    
        `= 3x^2 - 9x + 2x - 6`
    
        `= 3x (x - 3) + 2(x - 3)`
    
          = (x - 3) (3x + 2)     (Ans)






    1. Report
  3. Question:উৎপাদকে বিশ্লেষণ কর: `x^3 + 2x^3 - 5x - 6` 

    Answer
    ধরি, `f(x) = x^3 + 2x^2 - 5x - 6`
    
     তাহলে, `f(2) = (2)^3 + 2(2)^2 - 5(2) - 6`
    
             = 8 + 2.4 - 10 - 6
    
             = 8 + 8 - 10 - 6
    
             = 0
    
     `:. (x - 2), f(x)`  এর একটি উৎপাদক।
    
     এখন, `x^3 + 2x^2 - 5x - 6`
    
      `= x^3 - 2x^2 + 4x^2 - 8x + 3x - 6`
    
      `= x^2 (x - 2) + 4x (x - 2) + 3(x - 2)`
    
      `= (x - 2) (x^2 + 4x + 3)`
    
      `= (x - 2) (x^2 + 3x + x + 3)`
    
      `= (x - 2) {x (x + 3) + 1(x + 3)}`
    
      `= (x - 2) (x + 3) (x + 1)`
    
      `= (x - 2) (x + 1) (x + 3)`   (Ans)






    1. Report
  4. Question:উৎপাদকে বিশ্লেষণ কর: `x^3 + 4x^2 + x - 6` 

    Answer
    ধরি, `f(x) = x^3 + 4x^2 + x - 6`
    
    তাহলে, `f(1) = (1)^3 + 4(1)^2 + 1 - 6`
    
           `= 1 + 4.1 + 1 - 6`
    
             = 6 - 6
    
             = 0
    
       :. (x - 1), f(x)  এর একটি উৎপাদক।
    
      এখন, `x^3 + 4x^2 + x - 6`
    
      `= x^3 - x^2 + 5x^2 - 5x + 6x - 6`
    
      `= x^2 (x - 1) + 5x (x - 1) + 6 (x - 1)`
    
      `= (x - 1) (x^2 + 5x + 6)`
    
      `= (x - 1) (x^2 + 3x + 2x + 6)`
    
      `= (x - 1) {x (x + 3) + 2(x + 3)}`
    
      `= (x - 1) (x + 3) (x + 2)`
    
      `= (x - 1) (x + 2) (x + 3)`   (Ans)






    1. Report
  5. Question:উৎপাদকে বিশ্লেষণ কর: `a^4 - 4a + 3` 

    Answer
    মনে করি,  `f(a) = a^4 - 4a + 3`
    
       `:. f(1) = (1)^4 - 4(1) + 3`
    
          `= 1 - 4 + 3 = 4 - 4 = 0`
    
       `:. (a - 1), f(a)` এর একটি উৎপাদক।
    
      এখন, `a^4 - 4a + 3`
    
      `= a^4 - a^3 + a^3 - a^2 + a^2 - a - 3a + 3`
    
      `= a^3 (a - 1) + a^2(a - 1) + a(a - 1) - 3(a - 1)`
    
      `= (a - 1) (a^3 + a^2 + a - 3)`
    
     আবার মনে করি, `g(a) = a^3 + a^2 + a - 3`
    
     তাহলে, `g(1) = (1)^3 + (1)^2 + (1) - 3`
    
                   `= 1 + 1 + 1 - 3`
    
                   `= 3 - 3 = 0`
    
      `:. (a - 1), g(a)` এর একটি উৎপাদক।
    
     এখন, `a^3 + a^2 + a - 3`
    
      `= a^3 - a^2 + 2a^2 - 2a + 3a - 3`
    
      `= a^2 (a - 1) + 2a(a - 1) + 3(a - 1)`
    
      `=  (a - 1) (a^2 + 2a + 3)`
    
     `:. a^4 - 4a + 3 = (a - 1) (a - 1) (a^2 + 2a + 3)`  (Ans)






    1. Report
Copyright © 2025. Powered by Intellect Software Ltd