1. Question:৮.সমাধান কর: (vi). `81((1 - x)/(1 + x))^3 = (1 + x)/(1 - x)` 

    Answer
    ৮.(vi).সমাধান: `81((1 - x)/(1 + x))^3 = (1 + x)/(1 - x)`
    
        বা, `81 = (1 + x)/(1 - x) xx ((1 + x)/(1 - x))^3`
    
        বা, `(9)^2 = {((1 + x)/(1 - x))^2}^2`
    
        বা, `((1 + x)/(1 - x))^2 = 9` [ বর্গমূল করে ]
    
        বা, `(1 + x)/(1 - x) = +- 3`   [ বর্গমূল করে ]
    
      হয়, `(1 + x)/(1 - x) = 3`                  
    
        বা, `1 + x = 3 - 3x`                  
    
        বা, `4x = 2`                                
    
        `:. x = 1/2`
        
       অথবা, `(1 + x)/(1 - x) = - 3`
       
        বা, `1 + x = - 3 + 3x`
    
        বা, `2x = 4`                              
         
       `:. x = 2`
    
     `:.` নির্ণেয় সমাধান, `x = 2`
                      অথবা `x = 1/2`






    1. Report
  2. Question:৯.`a/b = c/d` হলে, দেখাও যে, (i). `(a^2 + ab + b^2)/(a^2 - ab + b^2) = (c^2 + cd + d^2)/(c^2 - cd + d^2)` (ii) `(ac + bd)/(ac - bd) = (c^2 + d^2)/(c^2 - d^2)` 

    Answer
    সমাধান: ৯.
    (i).দেওয়া আছে,`a/b = c/d`
    
     ধরি,`a/b = c/d = k`
    
     `:. a = bk` এবং  `c = dk`
    
     বামপক্ষ `=(a^2 + ab + b^2)/(a^2 - ab + b^2)`
    
     `=((bk)^2 + bk xx b + b^2)/((bk)^2 - bk xx b + b^2)`
    
     `=(b^2k^2 + b^2k + b^2)/(b^2k^2 - b^2k + b^2)`
    
     `=(b^2(k^2 + k +1))/(b^2(k^2 - k + 1))`
    
     `=(k^2 + k + 1)/(k^2 - k + 1)`
    
     ডানপক্ষ `=(c^2 + cd + d^2)/(c^2 - cd + d^2)`
    
     `=((dk)^2 + dk xx d + d^2)/((dk)^2 - dk xx d + d^2)`
    
     `=(d^2k^2 + d^2k + d^2)/(d^2k^2 - d^2k + d^2)`
    
     `=(d^2(k^2 + k + 1))/(d^2(k^2 - k + 1))`
    
     `=(k^2 + k + 1)/(k^2 - k + 1)`
    
    `:. (a^2 + ab + b^2)/(a^2 - ab + b^2) = (c^2 + cd + d^2)/(c^2 - cd + d^2)`( দেখানো হলো )
    (ii).দেওয়া আছে,`a/b = c/d`
    
     ধরি,`a/b = c/d = k`
    
     `:. c = dk`
    
        `a = bk`
    
    বামপক্ষ `=(ac + bd)/(ac - bd)`
    
     `=(bk xx dk + bd)/(bk xx dk - bd)`
    
     `=(bdk^2 + bd)/(bdk^2 - bd)`
    
     `=(bd(k^2 + 1))/(bd(k^2 - 1))`
    
     `=(k^2 + 1)/(k^2 - 1)`
    
    ডানপক্ষ `=(c^2 + d^2)/(c^2 - d^2)`
    
     `=((dk)^2 + d^2)/((dk)^2 - d^2)`
    
     `=(d^2k^2 + d^2)/(d^2k^2 - d^2)`
    
     `=(d^2(k^2 + 1))/(d^2(k^2 - 1))`
    
     `=(k^2 + 1)/(k^2 - 1)`
    
    `:. (ac + bd)/(ac - bd) = (c^2 + d^2)/(c^2 - d^2)` ( দেখানো হলো )






    1. Report
  3. Question:১০.`a/b = b/c = c/d` হলে, দেখাও যে, (i).`(a^3 + b^3)/(b^3 + c^3) = (b^3 + c^3)/(c^3 + d^3)` (ii).`(a^2 + b^2 + c^2)(b^2 + c^2 + d^2) = (ab + bc + cd)^2` 

    Answer
    ১০.সমাধান:
    (i).দেওয়া আছে,
    
    `a/b = b/c = c/d`
    
     ধরি,
    
    `a/b = b/c = c/d = k`
    
    `:. c = dk`
    
    `b = ck = dk.k = dk^2`
    
    `a = bk = dk^2.k = dk^3`
    
    বামপক্ষ 
    
    `= (a^3 + b^3)/(b^3 + c^3)`
    
    `= ((dk^3)^3 + (dk^2)^3)/((dk^2)^3 + (dk)^3)`
    
    `= (d^3k^9 + d^3k^6)/(d^3k^6 + d^3k^3)`
    
    `= (d^3k^6(k^3 + 1))/(d^3k^3(k^3 + 1))`
    
    `= k^3` 
    
    ডানপক্ষ
    
    `= (b^3 + c^3)/(c^3 + d^3)`
    
    `= ((dk^2)^3 + (dk)^3)/((dk)^3 + d^3)`
    
    `= (d^3k^6 + d^3k^3)/(d^3k^3 + d^3)`
    
    `= (d^3k^3(k^3 + 1))/(d^3(k^3 + 1))`
    
    `= k^3`
    
    `:. (a^3 + b^3)/(b^3 + c^3) = (b^3 + c^3)/(c^3 + d^3)` ( দেখানো হলো )
    (ii).দেওয়া আছে,
    
    `a/b = b/c = c/d`
    
     ধরি,
    
    `a/b = b/c = c/d = k`
    
    `:. c = dk`
    
    `b = ck = dk.k = dk^2`
    
    `a = bk = dk^2.k = dk^3`
    
    বামপক্ষ 
    
    `= (a^2 + b^2 + c^2)(b^2 + c^2 + d^2)`
    
    `= {(dk^3)^2 + (dk^2)^2 + (dk)^2}{(dk^2)^2 + (dk)^2 + d^2}`
    
    `= {d^2k^6 + d^2k^4 + d^2k^2}{d^2k^4 + d^2k^2 + d^2}`
    
    `= d^2k^2(k^4 + k^2 + 1) xx d^2(k^4 + k^2 + 1)`
    
    `= d^4k^2(k^4 + k^2 + 1)^2`
     
     ডানপক্ষ
    
    `= (ab + bc + cd)^2`
    
    `= (dk^3 xx dk^2 + dk^2 xx dk + dk xx d)^2`
    
    `= (d^2k^5 + d^2k^3 + d^2k)^2`
    
    `= {d^2k(k^4 + k^2 + 1)}^2`
    
    `= d^4k^2(k^4 + k^2 + 1)^2`
    
    `:. (a^2 + b^2 + c^2)(b^2 + c^2 + d^2) = (ab + bc + cd)^2` ( দেখানো হলো )






    1. Report
  4. Question:১১.`x = (4ab)/(a + b)` হলে, দেখাও যে, `(x + 2a)/(x - 2a) + (x + 2b)/(x + 2b) = 2, a != b` 

    Answer
    ১০. সমাধান:
    দেওয়া আছে,
    
     `x = (4ab)/(a + b)`
    
    বা, `x = (2a xx 2b)/(a + b)`
    
     `:. x/(2a) = (2b)/(a + b)` 
    
    এবং `x/( 2b) = (2a)/(a + b)`
    
    যখন, `x/(2a) = (2b)/(a + b)`
    
    তখন, `(x + 2a)/(x - 2a) = (2b + a + b)/(2b - a - b)` [ যোজন-বিয়োজন করে ]
    
     `:. (x + 2a)/(x - 2a) = (a + 3b)/(b - a)` .........(i)
    
    আবার, যখন `x/( 2b) = (2a)/(a + b)`
    
    তখন, `(x + 2b)/(x - 2b) = (2a + a + b)/(2a - a - b)` [ যোজন-বিয়োজন করে ]
    
    `:. (x + 2b)/(x - 2b) = (3a + b)/(a - b)`..........(ii)
    
    (i) নং এবং (ii) নং সমীকরণ যোগ করে পাই,
    
     `(x + 2a)/(x - 2a) + (x + 2b)/(x - 2b) = (a + 3b)/(b - a) + (3a + b)/(a - b)`
    
     `=  (a + 3b)/(b - a) + (3a + b)/( - (b - a))`
    
     `= (a + 3b)/(b - a) - (3a + b)/(b - a)`
    
     `= (a + 3b - (3a + b))/(b - a)`
    
     `= (2b - 2a)/(b - a)`
    
     `= (2(b - a))/((b - a))`
    
     `= 2`
    
    `:. (x + 2a)/(x - 2a) + (x + 2b)/(x + 2b) = 2` ( দেখানো হলো )






    1. Report
  5. Question:১২. `x = (root(3)(m + 1) + root(3)(m - 1))/(root(3)(m + 1) - root(3)(m - 1))` হলে, প্রমাণ কর যে, `x^3 - 3mx^2 + 3x - m = 0.` 

    Answer
    ১২. সমাধান:
    দেওয়া আছে,
    
        `x = (root(3)(m + 1) + root(3)(m - 1))/(root(3)(m + 1) - root(3)(m - 1))`
    
    বা, `(x + 1)/(x - 1) =(root(3)(m + 1) + root(3)(m - 1) + root(3)(m + 1) - root(3)(m - 1))/(root(3)(m + 1) + root(3)(m - 1) - root(3)(m + 1) + root(3)(m - 1))` [ যোজন-বিয়োজন করে ]
    
    বা, `(x + 1)/(x - 1) = (2root(3)(m + 1))/(2root(3)(m - 1))`
    
    বা, `(x + 1)/(x - 1) = (root(3)(m + 1))/(root(3)(m - 1))` 
     
    বা, `((x + 1)/(x - 1))^3 = ((root(3)(m + 1))/(root(3)(m - 1)))^3` [ উভয়পক্ষকে ঘন করে ]
    
    বা, `(x^3 + 3x^2 + 3x + 1)/(x^3 - 3x^2 + 3x - 1) = (m + 1)/(m - 1)`
    
    বা, `(x^3 + 3x^2 + 3x + 1 +x^3 - 3x^2 + 3x - 1)/(x^3 + 3x^2 + 3x + 1 - x^3 + 3x^2 - 3x + 1) = (m + 1 + m - 1)/(m + 1 - m - 1)` 
     [ পুনরায় যোজন-বিয়োজন করে ]
    
    বা, `(2x^3 + 6x)/(2 + 2x^2) = (2m)/2`
    
    বা, `(2(x^3 + 3x))/(2(1 + 3x^2)) = m`
    
    বা, `x^3 + 3x = m + 3mx^2`  [ আড় গুণন করে ]
    
    `:. x^3 - 3mx^2 + 3x - m = 0` ( প্রমাণিত )






    1. Report
Copyright © 2025. Powered by Intellect Software Ltd