Question:19.> (a + b + c) p = (b + c - a) q = (c + a - b) r = (a + b + c) s হয়, তবে প্রমাণ কর যে, `1/q + 1/r + 1/s = 1/p`
Answer
মনে করি, (a + b + c) p = (b + c - a) q = (c + a - b) r = (a + b - c) s = k :. p (a + b + c) = k বা, p `= k/(a + b + c)` :. `1/p = (a + b + c)/k`........(i) আবার, q (b + c - a) = k বা, `q = k/(b + c - a)` :. `1/q = (b + c - a)/k`.........(ii) আবার, r (c + a - b) = k বা, r = `k/(c + a - b)` :. `1/r = (c + a - b)/k`...........(iii) এবং s (a + b - c) = k বা, s =` k/(a + b - c)` :.` 1/s = (a + b - c)/k`..........(iv) (ii) নং (iii) নং এবং (iv) নং সমীকরণ যোগ করে পাই, `1/q + 1/r + 1/s = (b + c - a)/k + (c + a - b)/k + (a + b - c)/k` `= 1/k (b + c - a + c + a - b + a + b - c)` `= (a + b + c)/k` `= 1/p` [(i) নং থেকে] :. `1/q + 1/r + 1/s = 1/p` (প্রমাণিত)