Question:19.> (a + b + c) p = (b + c - a) q = (c + a - b) r = (a + b + c) s হয়, তবে প্রমাণ কর যে, `1/q + 1/r + 1/s = 1/p`
Answer
মনে করি,
(a + b + c) p = (b + c - a) q = (c + a - b) r
= (a + b - c) s = k
:. p (a + b + c) = k
বা, p `= k/(a + b + c)`
:. `1/p = (a + b + c)/k`........(i)
আবার, q (b + c - a) = k
বা, `q = k/(b + c - a)`
:. `1/q = (b + c - a)/k`.........(ii)
আবার, r (c + a - b) = k
বা, r = `k/(c + a - b)`
:. `1/r = (c + a - b)/k`...........(iii)
এবং s (a + b - c) = k
বা, s =` k/(a + b - c)`
:.` 1/s = (a + b - c)/k`..........(iv)
(ii) নং (iii) নং এবং (iv) নং সমীকরণ যোগ করে পাই,
`1/q + 1/r + 1/s = (b + c - a)/k + (c + a - b)/k + (a + b - c)/k`
`= 1/k (b + c - a + c + a - b + a + b - c)`
`= (a + b + c)/k`
`= 1/p` [(i) নং থেকে]
:. `1/q + 1/r + 1/s = 1/p` (প্রমাণিত)